
Release 0.941
24. May 2006
http://vsis-www.informatik.uni-hamburg.de/projects/jadex/

Lars Braubach
Alexander Pokahr
Andrzej Walczak

Distributed Systems Group
University of Hamburg, Germany
http://vsis-www.informatik.uni-hamburg.de

If you have support questions about Jadex please use the sourceforge help forum and
mailing list for that purpose (available at http://sourceforge.net/projects/jadex/).

http://vsis-www.informatik.uni-hamburg.de/projects/jadex/
http://vsis-www.informatik.uni-hamburg.de
http://sourceforge.net/forum/forum.php?forum_id=274112
http://sourceforge.net/mail/?group_id=80240
http://sourceforge.net/projects/jadex/

Table of Contents
1. Introduction .. 1

1.1. Application Context ... 1
1.2. How to Use This Tutorial ... 1

2. Starting an Agent .. 3
2.1. Exercise A1 - Jadex Platform .. 3

3. Using Plans ... 5
3.1. Exercise B1 - Service Plans .. 5
3.2. Exercise B2 - Passive Plans .. 7
3.3. Exercise B3 - Plan Parameters ... 8
3.4. Exercise B4 - Plan Selection ... 8
3.5. Exercise B5 - BDI Debugger ... 10
3.6. Exercise B6 - Log-Outputs .. 10

4. Using Beliefs .. 13
4.1. Exercise C1 - Beliefs .. 13
4.2. Exercise C2 - Beliefsets .. 15
4.3. Exercise C3 - Belief Conditions .. 16
4.4. Exercise C4 - BDI Viewer .. 17

5. Using Capabilities ... 19
5.1. Preparation .. 19
5.2. Exercise D1 - Creating a Capability ... 20
5.3. Exercise D2 - Exported Beliefs ... 20

6. Using Goals ... 23
6.1. Exercise E1 - Subgoals ... 23
6.2. Exercise E2 - Retrying a Goal ... 25
6.3. Exercise E3 - Maintain Goals .. 25

7. Using Events ... 27
7.1. Exercise F1 - Internal Events .. 27
7.2. Exercise F2 - Receiving Messages ... 29
7.3. Exercise F3 - Service publication .. 30
7.4. Exercise F4 - A Multi-Agent Scenario ... 30

8. External Processes .. 35
8.1. Exercise G1 - Socket Communication .. 35

9. Conclusion and Outlook .. 37
9.1. Ontologies ... 37
9.2. Goal Deliberation ... 37
9.3. Plan Deliberation ... 37
9.4. Jadex BDI Architecture .. 37

Bibliography .. 39

Chapter 1. Introduction
Jadex is a Belief-Desire-Intention (BDI) reasoning engine for intelligent agents. The term reasoning engine
means that it can be used together with different kinds of (agent) middleware providing basic agent services
such as a communication infrastructure and management facilities. Currently, two mature adapters are avail-
able. The first adapter is available for the well-known open-source JADE multi-agent platform and the second
one is the Jadex Standalone adapter which is a small but fast environment with a minimal memory footprint. In
this tutorial the Jadex Standalone adapter is used, but in principle the used adapter is not of great importance as
it does not change the way Jadex agents are programmed.

The concepts of the BDI-model initially proposed by Bratman [Bratman 1987] were adapted by Rao and
Georgeff [Rao and Georgeff 1995] to a more fomal model that is better suitable for multi-agent systems in the
software architectural sense. Systems that are built on these foundations are called Procedural Reasoning Sys-
tems (PRS) with respect to their first representative. Jadex builds on experiences gained from leading existing
BDI systems such as JACK [Winikoff 2005] and consequently improves previously not-addressed BDI weak-
nesses like the concurrent handling of inconsistent goals with built-in goal deliberation [Pokahr et al. 2005a].

This tutorial is a good starting point for agent developers, that want to learn programming Jadex BDI agents in
small hands-on exercises. Each lesson of this tutorial covers one important concept and tries to illustrate why
and especially how the concept can be used in Jadex. In the following Chapter 2, Starting an Agent it is de-
scribed how to setup the Jadex environment properly and how to start a simple agent. It is explained step by
step how to handle plans (Chapter 3, Using Plans), beliefs (Chapter 4, Using Beliefs) and goals (Chapter 6, Us-
ing Goals) and how these elements can be composed (Chapter 5, Using Capabilities) into reusable agent mod-
ules. Another lesson covers some aspects about information exchange on the intra and inter-agent level and
builds up a multi-agent scenario Chapter 7, Using Events. Thereafter, in Chapter 8, External Processes the in-
tegration of Jadex agents with external processes is exemplarily explained. Finally a conclusion and an outlook
is given in Chapter 9, Conclusion and Outlook. After having worked through this tutorial the reader should be
familiar with all basic agent concepts provided by Jadex. Whenever the reader encounters facts that are not ex-
plained in detail here but may need some elaboration for a thorough understanding further reading in the Jadex
user guide [Jadex User Guide] is recommended. If you are interested in less technical documentation you may
also consider reading about Jadex in one of these book chapters [Pokahr et al. 2005c][Braubach et al. 2005a].

1.1. Application Context
In this tutorial a simple translation agent for single words will be implemented. This agent has the basic task to
handle translation requests and produce for a given term in some language the translated term in the desired tar-
get language. This base functionality will be extended in the different exercises, but it is not our goal to build
up a translation agent, that combines all the extensions, because this would lead to difficulties concerning the
complexity of the agent. Instead this tutorial will concentrate on setting up simple agents that explain the Jadex
concepts step by step.

1.2. How to Use This Tutorial

• Work through the exercises in order, because later exercises require knowledge from the earlier ones.

• Don't destroy your solutions of an exercise by modifying the old files. The different exercises often use the
plans and agent description files (ADF) of a preceeding exercise. Copy all files and apply a simple naming
scheme which contains the name of the exercise in the plan and ADF file names, e.g. the ADF in the exer-
cise A1 is called TranslationA1.agent.xml and in exercise B1 TranslationB1.agent.xml.

• Help us to make this tutorial better with your feedback. When you find errors or have problems that are dir-
ectly concerned with the exercise descriptions feel free to let us know.

• Whenever you encounter problems with Jadex we would be happy to help you. Please use therefore the Ja-
dex mailing list and sourceforge help forum available on the Jadex sourceforge.net page.

1.2. How to Use This Tutorial

2 Jadex Tutorial - Release 0.941

http://sourceforge.net/mail/?group_id=80240
http://sourceforge.net/mail/?group_id=80240
http://sourceforge.net/forum/forum.php?forum_id=274112

Chapter 2. Starting an Agent

2.1. Exercise A1 - Jadex Platform

Setting up the Jadex environment properly is pretty easy and can be done in a few simple steps. Generally, Ja-
dex is realized as reasoning engine meaning that it can be used on top of different (agent) middlewares. In this
tutorial we will use the Standalone version of Jadex. The Jadex distribution should be extracted to some local
directory, called JADEX_HOME here.

Set the Java CLASSPATH variable properly by adding the following jars:

The actual filenames of the jar files may differ slightly due to versioning conventions.

Necessary libraries for the Jadex kernel:

• JADEX_HOME/lib/jadex_rt.jar

• JADEX_HOME/lib/jibx-run.jar

• JADEX_HOME/lib/xpp3.jar

Necessary libraries for the Jadex Standalone platform:

• JADEX_HOME/lib/jadex_standalone.jar

Necessary libraries for the Jadex tools:

• JADEX_HOME/lib/jadex_tools.jar

• JADEX_HOME/lib/GraphLayout.jar

• JADEX_HOME/lib/jhall.jar

The command for launching the Jadex Standalone platform is:

java [conf=<platform.properties>] jadex.adapter.standalone.Platform
If the configuration file is not specified, the default configuration (jadex.properties) will be read from the
root directory of the jadex_standalone.jar.

Create a simple Jadex agent. Open a source code editor or an IDE of your choice and create a new agent
definition file (ADF) called TranslationA1.agent.xml (cf. Figure 2.1, “A1 XML ADF”). We recommend us-
ing eclipse with web-tools plug-in for editing ADFs or the commercial application Altova XMSpy. In this file
all important agent startup properties are defined in a way that complies to the Jadex schema specification. First
property of the agent is its type name which must be the same as the file name (similar to Java class files), in
this case it is set to TranslationA1. Additionally you can specify a package attribute, which has a similar mean-
ing as in Java programs and serves for grouping purposes only (you will need to alter the package name with
respect to your actually used directory structure). All plans and other Java classes from the agent's package are
automatically known and need not to be imported via an import tag.

1 <!--
2 TranslationAgent
3 -->

4 <agent xmlns="http://jadex.sourceforge.net/jadex"
5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
6 xsi:schemaLocation="http://jadex.sourceforge.net/jadex
7 http://jadex.sourceforge.net/jadex-0.94.xsd"
8 name="TranslationA1"
9 package="jadex.tutorial">
10 </agent>

Figure 2.1. A1 XML ADF

Start your first Jadex agent. Start the Jadex platform with the command explained above. After some short
time the Jadex ControlCenter should show up with its user intferace. Within the "Start Agents" panel browse
the directories and select your TranslationA1.agent.xml. The effect of choosing the input file is, that the agent
model is loaded. When it contains no errors, the description of the model, taken from the XML comment above
the agent tag, is shown in the description view. In case there are errors in the model, correct the errors shown in
the description view and press “reload”. Below the file name, the agent name and its default configuration are
shown. It is possible to add additional comma separated arguments in the arguments input field, if this is de-
sired. After pressing the start button the new agent should appear in the agent tree. Curiously, you can start a
second JCC by choosing it from: ../extensions/tools/runtimetools/src/jadex/tools/jcc/JCC.agent.xml and giv-
ing it a name like JCC2.

2.1. Exercise A1 - Jadex Platform

4 Jadex Tutorial - Release 0.941

Chapter 3. Using Plans
Plans play a central role in Jadex, because they encapsulate the recipe for achieving some state of affair. Gener-
ally, a plan consists of two parts in Jadex. The plan body is a standard Java class that extends a predefined Ja-
dex framework class (jadex.runtime.Plan or jadex.runtime.MobilePlan) and has at least to implement the
abstract body() resp. action() method which is invoked after plan instantiation. The plan body is associated to
a plan head in the ADF. This means that in the plan head several properties of the plan can be specified, e.g. the
circumstances under which it is activated and its importance in relation to other plans.

In contrast to other well-known PRS-like systems, Jadex supports two styles of plans. A so called service plan
is a plan that has service character in the sense that a plan instance of the plan is usually running and waits for
service requests. It represents an easy way to react on service requests sequentially without the need to syn-
chronize different plan instances for the same plan. Therefore a service plan can setup its private event
waitqueue and receive events for later processing, even when it is working at the moment.

A so called PRS-style or passive plan is the normal version of a plan, as can be found in all other PRS-systems.
This means that usually such a plan is only running, when it has a task to achieve. For this kind of plan the trig-
gering events and goals must be specified in the agent definition file to let the agent know what kinds of events
this plan can handle. When an agent receives an event, the BDI reasoning engine builds up the so called applic-
able plan list (that are all plans which can handle the current event or goal) and candidate(s) are selected and in-
stantiated for execution. PRS-style plans are a good choice, when the parallel execution of one kind of task is
needed or is at least not disturbing. For more detailed information about plans have a look in the [Jadex User
Guide].

Often a plan does some action and then wants to wait until the action has been done before continuing (e.g. dis-
patching a subgoal, sending a message and waiting for the reply). Therefore a plan can use one of the various
waitFor() methods, that come in quite different flavors. Coming back to the examples mentioned, e.g. the dis-

patchSubgoalAndWait(IGoal subgoal [, long timeout]) can be used to dispatch a subgoal and wait for its
completion (optionally with some timeout). Similar, for sending a message and waiting for a reply the
sendMessageAndWait(IMessageEvent me [, long timeout]) method can be used. For an extensive overview
of all available methods, please refer to the [Jadex User Guide] or the API documentation.

3.1. Exercise B1 - Service Plans

In this exercise we will use a service plan for translating words from German to English. Create a new Transla-
tionB1.agent.xml file by copying the TranslationA1.agent.xml file and modify all occurrences of "A1" to "B1".

Create a new file called EnglishGermanTranslationPlanB1.java responsible for a basic word translation
with the following properties:

• Create the plan as extension to the jadex.runtime.Plan class:

public class EnglishGermanTranslationPlanB1 extends Plan {
// Plan attributes.

public EnglishGermanTranslationPlanB1() {
// Initialization code.

}

public void body() {
// Plan code.

}
}

• Import the needed classes:

import java.util.*;
import jadex.runtime.*;

• Let the no argument constructor print out the text "Created:"+this.

• Implement the plan's body() method as infinite loop. At the beginning of this loop the plan should wait for
translation requests:

IMessageEvent me = waitForMessageEvent("request_translation");

Instead of performing a database query let us use a simple hashmap for the word lookup. The creation and
initialization of this word table with a few word pairs can already be done in the constructor. As result the
plan should print "Translating from English to German: "+eword+" - "+gword or "Sorry word is

not in database: "+eword. To get the content from the request-event use me.getContent().

Add the plan to the agent by putting it into the agent definition file:

• Therefore, a new plans section is introduced (lines 13-20), in which all plans for the agent have to be de-
clared. In this simple example only one plan named here "egtrans" is added (lines 14-19). In line 15 the Java
expression for creating the plan body is stated. Note that it is allowed to use any Java mechanism to create
the plan (e.g. one could use a static method instead of a constructor call). In the next lines the plan's
waitqueue is declared to handle all message events of type "request_translation". This means that the plan
has its own event waitqueue in which all matching events are dispatched, even when the plan is busy and
currently waits for other events. These events are collected in its queue till it calls a suitable waitFor()

matching one of the collected events. In this case this collected event is directly dispatched to the plan.

• The plan should be started when the agent is born. For this purpose an initial state has to be declared within
the ADF (lines 30-36). It is sufficient in this case to define one initial state (named "default") with an initial
plan (lines 31-35). The initial plan simply references the plan for which an instance should be created (line
33).

• Besides the introduction of the new plan we also need to make explicit what exactly a request_translation
event means. For this purpose a new events section is introduced (lines 22-28). In this section the re-
quest_translation event is declared being a message event with one parameter (lines 23-27). This parameter
specifies that its performative has the fixed value request. Whenever the agent receives a message it will
search its declared events for the best matching event type. In this case all messages with performative re-
quest it will be treated as request_translation events.

1 <!--
2 Creating an initial plan.
3 The agent has one initial plan (created when the agent is born)
4 for translating words from English to German.
5 -->
6 <agent xmlns="http://jadex.sourceforge.net/jadex"
7 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
8 xsi:schemaLocation="http://jadex.sourceforge.net/jadex
9 http://jadex.sourceforge.net/jadex-0.94.xsd"
10 name="TranslationB1"
11 package="jadex.tutorial">
12
13 <plans>
14 <plan name="egtrans">
15 <body>new EnglishGermanTranslationPlanB1()</body>
16 <waitqueue>

3.1. Exercise B1 - Service Plans

6 Jadex Tutorial - Release 0.941

17 <messageevent ref="request_translation"/>
18 </waitqueue>
19 </plan>
20 </plans>
21
22 <events>
23 <messageevent name="request_translation" direction="receive" type="fipa">
24 <parameter name="performative" class="String" direction="fixed">
25 <value>jadex.adapter.fipa.SFipa.REQUEST</value>
26 </parameter>
27 </messageevent>
28 </events>
29
30 <initialstates>
31 <initialstate name="default">
32 <plans>
33 <initialplan ref="egtrans"/>
34 </plans>
35 </initialstate>
36 </initialstates>
37
38 </agent>

Figure 3.1. B1 XML ADF

Start and test the agent. Create a translation agent via the ControlCenter and observe the standard output, if
the initial plan is created at startup. Use the ConversationCenter to send a translation request to the Transla-
tionAgent by setting the performative to request and the content to some word to translate. Observe the Trans-
lationAgent's output on the console when it receives the request.

3.2. Exercise B2 - Passive Plans
In constrast to the last exercise we will now use a passive plan to react on translation requests. To show the dif-
ference between the two forms of plans we now modify the service plan slightly to become a passive plan. Cre-
ate the files EnglishGermanTranslationPlanB2.java and TranslationB2.agent.xml by copying the files from ex-
ercise B1.

Modify the copied file TranslationPlanB2.java.

• Replace all occurrences of "B1" in the Plan with "B2"

• In contrast to the initial plan, the passive plan's body method is only invoked, when an event matches the
plan's trigger. So use the method getInitialEvent() to retrieve the event that caused the execution. Be-
cause we know that only certain messages activate the plan the event can directly be cast to type ja-

dex.runtime.IMessageEvent and the content can be retrieved. The infinite loop in the body should be dis-
carded, because for each event a new plan instance is created, which only handles a single message.

Modify the copied file TranslationB2.agent.xml.

• Replace all occurrences of "B1" in the ADF file with "B2"

• Modify the plan declaration in the ADF by removing the initial states section. Additionally a passive plan
needs a trigger, that specifies under what circumstances a new plan instance is created. Therefore remove
the waitqueue statement and add a new statement for the plan trigger:

3.2. Exercise B2 - Passive Plans

Jadex Tutorial - Release 0.941 7

<trigger>
<messageevent ref="request_translation"/>

</trigger>

Start and test the agent. Start the agent as explained in the preceding exercise. Observe that a new instance of
the translation plan is created everytime an appropriate event arrives. The passive plan is instantiated and each
instance processes a different message event. Many different plan instances may remain active while pro-
cessing their triggers.

3.3. Exercise B3 - Plan Parameters
In this exercise we will use plan parameters to supply the plan with arguments. Plan parameters can directly be
accessed from within the plan body via the getParameter("paramname") and getParameter-

Set("paramsetname") methods. Generally parameters can have the directions in (default), out and inout de-
scribing parameters that are used for supplying values or resp. gathering return values from the plan. Plan para-
meters can be supplied with fixed values via the <value> or <values> tags. More interestingly parameter values
can be mapped from and to the triggers by using parameter mappings. If a plan could be activated by more than
one trigger (e.g. two different messages, or a message and a goal, etc.) multiple goal mappings (one for each
trigger type) have to be used to unify the plans view on its arguments.

Create the files EnglishGermanTranslationPlanB3.java and TranslationB3.agent.xml by copying the files from
exercise B2. Apply the same replacements B2->B3 as in the previous exercise.

Modify the EnglishGermanTranslationPlanB3.java.

• Instead of using the getInitialEvent() method to retrieve the English word, we use the the statement:

String eword = (String)getParameter("eword").getValue();

Modify the copied file TranslationB3.agent.xml to include the new plan parameter.

• Add the new plan parameter with a message event mapping to the ADF:

<plan name="egtrans">
<parameter name="eword" class="String">

<messageeventmapping ref="request_translation.content"/>
</parameter>
<body>new EnglishGermanTranslationPlanB2()</body>
<trigger>

<messageevent ref="request_translation"/>
</trigger>

</plan>

Start and test the agent. Test and verfify that the agent behaviour is the same as in the last exercise.

3.4. Exercise B4 - Plan Selection
In this exercise we will use plan priorities to establish a plan selection order. Create the files EnglishGerman-
TranslationPlanB4.java and TranslationB4.agent.xml by copying the files from exercise B2. Apply the same re-
placements B2->B4 as in the previous exercise.

Create a new plan file named SearchTranslationOnlineB4.java.

3.3. Exercise B3 - Plan Parameters

8 Jadex Tutorial - Release 0.941

• This plan should be used when the agent cannot find the word in its (currently very small) dictionary. In this
case the online search plan will try to connect to a web dictionary and report the found translations. The ad-
dress of a simple English-German dictionary is http://wolfram.schneider.org/dict/dict.cgi (you may use any
other dictionary for this purpose if you are not afraid of parsing the result HTML page). To issue a query
against this online database you need to create a URL and read the data from there as outlined below:

URL dict = new URL("http://wolfram.schneider.org/dict/dict.cgi?query="+eword);
BufferedReader in = new BufferedReader(new InputStreamReader(dict.openStream()));
String inline;
while((inline = in.readLine())!=null){

if(inline.indexOf("-")!=-1 && inline.indexOf(eword)!=-1) {
System.out.println(inline);

}
}
in.close();

Modify the EnglishGermanTranslationPlanB4 having a static dictionary.

• Make the variable for the dictionary static and initialize it in a static block instead of in the constructor:

static {
wordtable = new HashMap();
wordtable.put("coffee", "Kaffee");
wordtable.put("milk", "Milch");
wordtable.put("cow", "Kuh");
wordtable.put("cat", "Katze");
wordtable.put("dog", "Hund");

}

• Provide a public static method for testing if a word is contained in the dictionary:

public static boolean containsWord(String name) {
return wordtable.containsKey(name);

}

Modify the copied file TranslationB4.agent.xml to include the new plan.

• Add the new online search plan to the plan declarations:

<plan name="searchonline" priority="-1">
<body>new SearchTranslationOnlineB4()</body>
<trigger>

<messageevent ref="request_translation"/>
</trigger>

</plan>

• Modify the applicability of the translation plan by introducing a precondition

<plan name="egtrans">
<body>new EnglishGermanTranslationPlanB4()</body>
<trigger>

<messageevent ref="request_translation"/>
</trigger>
<precondition>

EnglishGermanTranslationPlanB4.containsWord((String)$event.getContent())
</precondition>

</plan>

Start and test the agent. When the agent receives translation request it searches applicable plans to handle
this request. If the word is contained in the dictionary both plans are applicable and the one with the higher pri-

3.4. Exercise B4 - Plan Selection

Jadex Tutorial - Release 0.941 9

http://wolfram.schneider.org/dict/dict.cgi

ority is chosen (in this case it is the egtrans plan because the standard priority is 0). When the word is not con-
tained in the dictionary only the searchonline plan is applicable and will be used.

3.5. Exercise B5 - BDI Debugger

Using the Jadex introspector tool agent to control the execution of an agent.

• Prepare the agent debugging by setting the debugging flag in a new properties section (at the end of the file)
of the ADF to true, e.g. in the B4 ADF. Therefore the agent will be started in step mode and will only pro-
cess events when the execution is manually requested in the introspector tool.

<properties>
<property name="debugging">true</property>

</properties>

Note that you can also freeze the execution of the translation agent by setting execution mode to "step" in
the tool. Using the debug flag is preferable when the agent directly starts with executing some actions and
you want to observe it right from the start.

• Start the translation agent of the last exercise from the ControlCenter.

• Switch to the debugger perspective in the ControlCenter and activate debugging for the translation agent by
right clicking the debugger tab.

• Use the ConversationCenter to send some translation requests to the translation agent (as in B4).

• Press the "step" button several times in the dispatcher and observe how an action from the agenda is ex-
ecuted. If the mode is "cycle" instead of step process event actions are executed in one step. Otherwise ac-
tions for all intermediate steps - searching applicable plans, selecting candidates from this list and schedul-
ing the candidates for execution - are generated.

The Jadex debugging perspective is conceived to support you in the debugging of agents and helps you to un-
derstand what happens inside an agent, e.g. you could use it for the agent from excercise B1 too to grasp the
differences between B1 and B2.

3.6. Exercise B6 - Log-Outputs
In this exercise we will use log-outputs instead of printing console outputs. Create the files EnglishGerman-
TranslationPlanB6.java and TranslationB6.agent.xml by copying the files from exercise B2.

Modify the copied file TranslationPlanB6.java.

• Replace all occurrences of System.out.println(..) to getLogger().info(..).

Modify the copied file TranslationB3.agent.xml.

• Add an imports section and the import statement for the java.logging classes to the imports section.

<imports>
<import>java.util.logging.*</import>

</imports>

• Introduce a properties section at the bottom of the ADF to specify the logging behaviour. Insert the follow-

3.5. Exercise B5 - BDI Debugger

10 Jadex Tutorial - Release 0.941

ing code:

<properties>
<property name="logging.level">Level.INFO</property>
<property name="logging.useParentHandlers">true</property>

</properties>

These properties can be used to control the agent logging. The log-level decides what kind of log-outputs
shall be considered for logging, according to the java.util.logging level hierarchy. Increasing the level
value, e.g. to warning means, that only log-outputs at this or a higher level are conisdered by the logger.
The useParentHandlers property can be used to turn on or off the standard console logging handler (per de-
fault it is set to true).

Start and test the agent. Start the translation agent. Send a translation request to the translation agent and
watch the console and logger output. To turn off the console output simply set the property useParentHandlers
in the ADF to false.

3.6. Exercise B6 - Log-Outputs

Jadex Tutorial - Release 0.941 11

Chapter 4. Using Beliefs
An agent's beliefbase represents its knowledge about the world. The beliefbase is in some way similar to a
simple data-storage, that allows the clean communication between different plans by the means of shared be-
liefs. Contrary to most PRS-style BDI systems, Jadex allows to store arbitrary Java objects as beliefs in its be-
liefbase. In Jadex between two kinds of beliefs is distinguished. On the one hand there are beliefs that allow the
user to store exactly one fact and on the other hand belief sets are supported that allow to store a set of facts.
The use of beliefs and belief sets as primary storage capacities for plans is strongly encouraged, because from
its usage the user benefits in several ways. If it is necessary to retrieve a cut out of the stored data this is suppor-
ted by a declarative OQL-like query language. Furthermore, it is possible to monitor single beliefs with respect
to their state and cause an event when a corresponding condition is satisfied. This allows to trigger some action
when e.g. a fact of a belief set is added or a belief is modified. It is also possible to wait for some complex ex-
pression that relates to several beliefs to become fulfilled.

4.1. Exercise C1 - Beliefs

From this point the copying and renaming of files is not explicitly stated anymore. Furthermore, from now on
we use a syntax in the request format that looks like this:

<action> <language(s)> <content>

To translate a word we have to send a request in the form:

translate english_german <word>

To add a new word pair to the database we have to send a request in the format:

add english_german <eword> <gword>

In this first exercise we will use the beliefbase for letting more than one plan having access to the word table by
using a belief for storing the word table.

Modify the existing plan to support the request format and introduce a new plan for adding word pairs.

• Create a new AddGermanWordPlanC1 as passive plan, that handles add-new-wordpair requests. In its body
method, the plan should check whether the format is correct (using a java.util.StringTokenizer). If it is
ok, it should retrieve the hashtable containing the word pairs via:

Map words = (Map)getBeliefbase().getBelief("egwords").getFact()

Assuming that the belief for storing the wordpairs is named "egwords". Now the plan has to check if the
English word is already contained in the map (using words.containsKey(eword)) and if it is not contained,
it should be added (using words.put(eword, gword)).

• Modify the EnglishGermanTranslationPlanC1 so, that it uses the word table stored as single belief in the
beliefbase. Additionally the plan has to check the newly introduced request format by using a
java.util.StringTokenizer.

• Add a static getDictionary() method to the EnglishGermanTranslationPlanC1. This method should return a
hashmap with some wordpairs contained in it. Besides the static method you also need to declare a static
variable for storing the dictionary:

protected static Map dictionary;
public static Map getDictionary(){

if(dictionary==null)
{

dictionary = new HashMap();
dictionary.put("milk", "Milch");
dictionary.put("cow", "Kuh");
dictionary.put("cat", "Katze");
dictionary.put("dog", "Hund");

}
return dictionary;

}

Update the ADF to incorporate the new plan and the new belief.

• The updated version of the translation agent ADF is outlined in Figure 4.1, “C1 XML ADF”. Note that the
agent now has two plans named "addword" for adding a word pair to the database and "egtrans" for translat-
ing from English to German. The belief declaration is enclosed by a beliefs tag that denotes that an arbitrary
number of belief declarations may follow. Of course, plans can create and delete beliefs (and belief sets) at
runtime. Therefore the methods createBelief(..), createBeliefSet(..) and deleteBelief(..), de-

leteBeliefSet(..) on the beliefbase can be used. The ADF only defines the initially created beliefs, op-
tionally with default fact(s). The belief for storing the wordtable is named "egwords" and typed through the
class attribute to java.util.Map. The tag of this element is set to belief (in contrast to beliefset) denot-
ing that only one fact can be stored. Further it is necessary to clarify which kinds of events trigger the plans.
Therefore, the events section (lines 41-58) is extended to include a new request_addword event type which
also matches request messages. To be able to distinguish between both kinds of events they are refined to
match only messages that start with a specific content string (cf. lines 46-48 / 54-56).

1 <!--
2 Using the beliefbase with a belief.
3 The agent stores its dictionary in a single-valued
4 belief that can be accessed from a translation as well
5 as from an add new word plan.
6 -->
7 <agent xmlns="http://jadex.sourceforge.net/jadex"
8 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
9 xsi:schemaLocation="http://jadex.sourceforge.net/jadex
10 http://jadex.sourceforge.net/jadex-0.94.xsd"
11 name="TranslationC1"
12 package="jadex.tutorial">
13
14 <imports>
15 <import>java.util.logging.*</import>
16 <import>java.util.*</import>
17 <import>jadex.adapter.fipa.*</import>
18 </imports>
19
20 <beliefs>
21 <belief name="egwords" class="Map">
22 <fact>EnglishGermanTranslationPlanC1.getDictionary()</fact>
23 </belief>
24 </beliefs>
25
26 <plans>
27 <plan name="addword">
28 <body>new EnglishGermanAddWordPlanC1()</body>
29 <trigger>
30 <messageevent ref="request_addword"/>
31 </trigger>
32 </plan>
33 <plan name="egtrans">
34 <body>new EnglishGermanTranslationPlanC1()</body>
35 <trigger>
36 <messageevent ref="request_translation"/>

4.1. Exercise C1 - Beliefs

14 Jadex Tutorial - Release 0.941

37 </trigger>
38 </plan>
39 </plans>
40
41 <events>
42 <messageevent name="request_addword" direction="receive" type="fipa">
43 <parameter name="performative" class="String" direction="fixed">
44 <value>SFipa.REQUEST</value>
45 </parameter>
46 <parameter name="content-start" class="String" direction="fixed">
47 <value>"add english_german"</value>
48 </parameter>
49 </messageevent>
50 <messageevent name="request_translation" direction="receive" type="fipa">
51 <parameter name="performative" class="String" direction="fixed">
52 <value>SFipa.REQUEST</value>
53 </parameter>
54 <parameter name="content-start" class="String" direction="fixed">
55 <value>"translate english_german"</value>
56 </parameter>
57 </messageevent>
58 </events>
59 </agent>

Figure 4.1. C1 XML ADF

Start and test the agent. Send several add-word and translation requests to the agent and observe, if it be-
haves well. In this example the belief is already created when the agent is initialized.

4.2. Exercise C2 - Beliefsets
Using a belief set for storing the word-pairs and employing beliefbase queries to look-up a word in the word ta-
ble belief set. In this example each word pair is saved in a data structure called jadex.util.Tuple which is a list
of entities similar to an object array. In contrast to an object array two tuples are considered to be equal when
they contain the same objects. Of course, in belief sets arbitrary Java objects can be stored, not just Tuples.

Modify the plans.

• Modify the EnglishGermanTranslationPlanC2 so, that it uses a query to search the requested word in the
belief set. Therefore use an expression defined in the ADF: this.queryword = getExpres-

sion("query_word"); (Assuming that the jadex.runtime.IExpression queryword is declared as instance
variable in the plan) To apply the query insert the following code at the corresponding place inside the
plan's body method: String gword = (String)queryword.execute("$eword", eword);

• Modify the EnglishGermanAddWordPlanC2 so, that it also uses the same query to find out, if a word pair is
already contained in the belief set. Apply the query before inserting a new word pair. When the word pair is
already contained log some warning message. To add a new fact to an existing belief set you can use the
method:

getBeliefbase().getBeliefSet("egwords").addFact(new jadex.util.Tuple(eword, gword))

Modify the ADF.

• For checking if a word pair is contained in the wordtable and for retrieving a wordpair from the wordtable a

4.2. Exercise C2 - Beliefsets

Jadex Tutorial - Release 0.941 15

query expression will be used. Insert the following code into the ADF below the events section:

<expressions>
<expression name="query_egword">

select one $wordpair.get(1)
from Tuple $wordpair in $beliefbase.egwords
where $wordpair.get(0).equals($eword)

<parameter name="$eword" class="String"/>
</expression>

</expressions>

We don't cover the details of the query construction in this tutorial. If you are interested in understanding
the details of the Jadex OQL query language, please consult the [Jadex User Guide].

• Modify the ADF by defining a belief set for the wordtable. Therefore change the tag type from "belief" to
"belief set" and the class from "Map" to "Tuple". Note that Tuple is a helper class that is located in ja-
dex.util and has to be added to the imports section if you don't specify the fully-qualified classname. Re-
move the old Map fact declaration and put in four new facts each surrounded by the fact tag. Put in the
same values as before (using new Tuple("milk", "Milch")) etc. for each fact.

Start and test the agent. Send several add-word and translation requests to the agent and observe, if it be-
haves well. Verify that it behaves exactly like the agent we built in exercise C1. This exercise does not func-
tionally modify our agent.

4.3. Exercise C3 - Belief Conditions
In this exercise we will use a condition for triggering a passive plan that congratulates every 10th user.

Create and modify plans.

• Create a new passive ThankYouPlanC3 that prints out a congratulation message and the actual number of
processed requests. The number of processed requests will be stored in a belief called "transcnt" in the
ADF. Retrieve the actual request number by getting the fact from the beliefbase with:

int cnt = ((Integer)getBeliefbase().getBelief("transcnt").getFact()).intValue();

• Modify the EnglishGermanTranslationPlanC3 to count the translation requests:

int cnt = ((Integer)getBeliefbase().getBelief("transcnt").getFact()).intValue();
getBeliefbase().getBelief("transcnt").setFact(new Integer(cnt+1));

Modify the ADF.

• Modify the ADF by defining the new ThankYouPlanC3 as passive plan (with the name thankyou in the
ADF) in the plans section. Instead of defining a triggering event for this passive plan we define a condition
that activates the new ThankYouPlanC3. A condition has the purpose the monitor some state of affair of the
agent. In this case we want to monitor the belief "transcnt" and get notified whenever 10 translations have
been requested. Insert the following in the plan's trigger:

<condition>$beliefbase.transcnt>0 && $beliefbase.transcnt%10==0</condition>

This condition consists of two parts: This first transcnt>0 makes sure that at least one translation has been
done and the second part checks if transcnt modulo 10 has no rest indicating that 10*x translations have
been requested. The two parts are connected via a logical AND (&&), that has to be written a little bit awk-

4.3. Exercise C3 - Belief Conditions

16 Jadex Tutorial - Release 0.941

wardly with the xml entities &&.

• Define and initialize the new belief in the ADF by introducing the following lines in the beliefs section:

<belief name="transcnt" class="int">
<fact>0</fact>

</belief>

Start and test the agent. Send some translation requests and observe if every 10th time the congratulation
plan is invoked and prints out its message.

4.4. Exercise C4 - BDI Viewer
In this exercise we will use the Jadex BDI introspector tool agent to view the beliefs of the agent.

• Start the translation agent from the last exercise. Before sending requests to the translation agent start the
Jadex BDI introspector agent by selecting the translation agent in the AgentManager and activating the
"Show Jadex Introspector" via pop-up menu.

• Use the Conversation Center to send translation or add-word requests to the translation agent.

• Observe the belief change of the translation count, whenever a translation request is processed.

• Observe the changes of the word pair belief set, whenever an add-word request is processed.

• Use the example from C1 to see the difference in the representation of the word table as belief and belief
set.

4.4. Exercise C4 - BDI Viewer

Jadex Tutorial - Release 0.941 17

Chapter 5. Using Capabilities
Different agents often need to use the same or similar functionalities that incorporate more than just plan beha-
viour. Often private or shared beliefs and goals are part of a common functionality of one agent. These units of
functionality are comparable to the module concept in the object oriented paradigm, but exhibit very different
properties because of the use of mentalistic notions. For this reasons the capability concept was originally intro-
duced [Busetta et al. 2000] and enhanced in [Braubach et al. 2005b] that allows for packaging a subset of be-
liefs plans and goals into an agent module and reuse this module wherever needed. Capabilities can contain
subcapabilities and have at most one parent capability. All elements of a capability have per default private vis-
ibility and need to be explicitly made available for usage in a connected capability. For this purpose elements
can be defined as abstract or exported enabling access from another capability.

5.1. Preparation

We use the functionality of the C2 Agent and build up a capability of its plans and beliefs. Therefore, it is ne-
cessary to copy and rename all files from C2 to D1. We slightly modify these plans to make the translation
agent answer to a request with a reply message. Therefore the following has to be done in both plans:

• Declare two variables at the beginning of the plans:

String reply; // The message event type of the reply.
String content; // The content of the reply message event.

• Set both variables with respect to the success of the translation. In the success case set (assuming that
gword and eword are variables for the English and German word respectively):

reply = "inform";
content = gword;

And in the failure case:

reply = "failure";
cont = "Sorry, world could not be translated: "+eword;

• Send an answer to the caller at the end of the event processing:

sendMessage(((IMessageEvent)getInitialEvent()).createReply(reply, cont));

• Add the new message event types "inform" and "failure" to the ADF:

<events>
...
<messageevent name="inform" direction="send" type="fipa">

<parameter name="performative" class="String" direction="fixed">
<value>SFipa.INFORM</value>

</parameter>
</messageevent>

<messageevent name="failure" direction="send" type="fipa">
<parameter name="performative" class="String" direction="fixed">

<value>SFipa.FAILURE</value>
</parameter>

</messageevent>
</events>

• Test the agent and verify that it answers to the request messages by sending an answer message (for correct
as well as for incorrect requests).

5.2. Exercise D1 - Creating a Capability
In this exercise we will create a translation capability.

Create a new Capability ADF.

• Create a new file TranslationD1.capability.xml with the skeleton code from Figure 5.1, “D1 XML ADF”.
Now copy the definition of imports, plans, beliefs, events (including the newly defined ones from above)
and expressions (in this case there are no goals) from TranslationC2.agent.xml into this file.

1 <!--
2 Translation capability.
3 -->
4 <capability xmlns="http://jadex.sourceforge.net/jadex"
5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
6 xsi:schemaLocation="http://jadex.sourceforge.net/jadex
7 http://jadex.sourceforge.net/jadex-0.94.xsd"
8 name="TranslationD1"
9 package="jadex.tutorial">
10 ...
11 </capability>

Figure 5.1. D1 XML ADF

• Modify the agent ADF (TranslationD1.agent.xml) by removing all plan and belief definitions. Instead insert
a new section for using the new capability.

<capabilities>
<capability name="transcap" file="TranslationD1"/>

</capabilities>

Note that here the type name is emloyed, but absolute and relative paths to (the model name of) the XML
file can also be used.

Start and test the agent. Load the agent model in the RMA and start the agent. Test the agent with add word
and translate requests. It should behave exactly like the Agent from C2. Use the introspector agent (using BDI-
view) to view the new internal structure of the agent.

5.3. Exercise D2 - Exported Beliefs
In this exercise we will extend the translation agent by making it capable to find synonyms for English words.
Therefore we extend the agent from D1 with a new find synonyms plan which will directly be contained in the
agent description. Because the plan needs to access the dictionary from the translation capability, the egwords
belief will be made usable from external.

Create a new plan.

• Create the file FindEnglishSynonymsPlanD2.java as a passive plan which reacts on messages with perform-
ative type request and starts with "find_synonyms english". Therefore, you need to introduce the new mes-
sage event type "find_synonyms" that fits for request messages that start with "find_synonyms english".

5.2. Exercise D1 - Creating a Capability

20 Jadex Tutorial - Release 0.941

• Create one query (called query_translate here) in the constructor for translating an English word (the query
expression can be copied from the EnglishGermanTranslationPlanD2). Create another query (called
query_find here) with the purpose to find all English words that match exactly a German word and are un-
equal to the given English word.

String find = "select $wordpair.get(0) " +
"from $wordpair in $beliefbase.egwords " +
"where $wordpair.get(1)==$gword && !$wordpair.get(0).equals($eword)";

this.queryfind = createExpression(find, new String[]{"$gword", "$eword"},
new Class[]{String.class, String.class});

• In the body method, search for synonyms when the message format is correct, what means that the request
has exactly three tokens. Use a StringTokenizer to parse the request and apply the translation query on the
the given English word. When a translation was found, use the result to apply the query find for searching
for synonyms. Create a reply and sent back the found synonyms as an inform message in the success case
and a failure message with a failure reason in the error case. The following code snippet outlines how the
second query can be realized (eword is the English word for which synonyms are searched, gword is the
German translation of the given English word):

query_find.setParameter("$gword", gword);
query_find.setParameter("$eword", eword);
List syns = (List)query_find.execute();

Create a new Capability ADF.

• Create a new file TranslationD2.capability.xml by copying the capability from exercise D1.

• Modify the belief set declaration of "egwords" by setting the belief set type="exported". Add some facts to
the belief "egtrans" to have some synonyms present.

<beliefset name="egwords" class="Tuple" exported="true">
<fact>new Tuple("milk", "Milch")</fact>
<fact>new Tuple("cow", "Kuh")</fact>
<fact>new Tuple("cat", "Katze")</fact>
<fact>new Tuple("dog", "Hund")</fact>
<fact>new Tuple("puppy", "Hund")</fact>
<fact>new Tuple("hound", "Hund")</fact>
<fact>new Tuple("jack", "Katze")</fact>
<fact>new Tuple("crummie", "Kuh")</fact>

</beliefset>

Create a new TranslationD2 Agent ADF.

• Create a new file TranslationD2.agent.xml by copying the file from D1. Extend this definition by adding
the new plan to the plans section and adding a referenced belief, that relates to the egwords belief from the
capability. Note that the name of the referenced belief can be chosen arbitrarily (in this case we name it
egwords, too). Additionally change the capability reference to the newly created TranslationCapabilityD2
and add the new message event type request_findsynonyms.

<beliefs>
<beliefsetref name="egwords">

<concrete ref="transcap.egwords" />
</beliefsetref>

</beliefs>

<plans>
<plan name="find_synonyms">

<body>new FindEnglishSynonymsPlanD2()</body>
<trigger>

5.3. Exercise D2 - Exported Beliefs

Jadex Tutorial - Release 0.941 21

<messageevent ref="request_findsynonyms"/>
</trigger>

</plan>
</plans>

<events>
<messageevent name="request_findsynonyms" direction="receive" type="fipa">

<parameter name="performative" class="String" direction="fixed">
<value>SFipa.REQUEST</value>

</parameter>
<parameter name="content-start" class="String" direction="fixed">

<value>"find_synonyms english"</value>
</parameter>

</messageevent>

<messageevent name="inform" direction="send" type="fipa">
<parameter name="performative" class="String" direction="fixed">

<value>SFipa.INFORM</value>
</parameter>

</messageevent>

<messageevent name="failure" direction="send" type="fipa">
<parameter name="performative" class="String" direction="fixed">

<value>SFipa.FAILURE</value>
</parameter>

</messageevent>
</events>

Start and test the agent. Start the agent and send it some find synonyms requests, e.g. "find_synonyms eng-
lish dog". When your agent works ok, you should be notified that the synonyms for dog are hound and puppy.
Use the bdi viewer (from the introspector) to understand what the belief set mapping means.

5.3. Exercise D2 - Exported Beliefs

22 Jadex Tutorial - Release 0.941

Chapter 6. Using Goals
Goal-oriented programming is one of the key concepts in the agent-oriented paradigm. It denotes the fact that
an agent commits itself to a certain objective and maybe tries all the possibilities to achieve its goal. A good ex-
ample for a goal that ultimately has to be achieved is the safe landing of an aircraft. The agent will try all its
plans until this goal has succeeded, otherwise it will not have the opportunity to reach any other goal when the
aircraft crashes. When talking about goals one can consider different kind of goals. What we discussed above is
called an achieve goal , because the agent wants to achieve a certain state of affairs. Similar to an achieve goal
is the query goal which aims at information retrieval. To find the requested information plans are only executed
when necessary. E.g. a cleaner agent could use a query goal to find out where the nearest waste bin is. Another
kind is represented through a maintain goal, that has to keep the properties (its maintain condition) satisfied all
the time. When the condition is not satisfied any longer, plans are invoked to re-establish a normal state. An ex-
ample for a maintain goal is to keep the temperature of a nuclear reactor below some specified limit. When this
limit is exceeded, the agent has to act and normalize the state. The fourth kind of goal is the perform goal,
which is directly related to some kind of action one wants the agent to perform. An example for a perform goal
is an agent that has to patrol at some kind of frontier.

6.1. Exercise E1 - Subgoals
In this exercise we will use a subgoal for translating words. Extend the translation agent C2 to have a second
translation plan for translations from English to French. Introduce a ProcessTranslationRequestPlanE1 that re-
ceives all incoming translation requests and uses a subtask triggered by an achieve goal to perform the transla-
tion.

Remove, create and modify plans.

• Remove the EnglishGermanAddWordPlan to keep the agent simple.

• Create a new initial ProcessTranslationRequestPlanE1 that reacts on all incoming messages with performat-
ive type request and creates subgoals for all (correctly formatted) requests. Because we are using a service
plan implement the body method with an infinite loop and start waiting for a message to process. Assuming
that the plan has extracted the action (translate), the language direction (english_german or english_french)
and the word(s) from an incoming message the following code can be used to create, dispatch and wait for a
subgoal:

IGoal goal = createGoal("translate");
goal.getParameter("direction").setValue(dir);
goal.getParameter("word").setValue(word);
try {

dispatchSubgoalAndWait(goal);
getLogger().info("Translated from "+goal.getName()+" "+

word+" - "+goal.getParameter("result").getValue());
}
catch(GoalFailureException e) {

getLogger().info("Word is not in database: "+word);
};

After the goal returns successfully, read the result from the goal and log some translation message.

• Modify the EnglishGermanTranslationPlanE1 so that it can handle a translation goal with direc-
tion="english_german". Therefore, the body method has to be adapted so that it extracts the word from the
plan parameter mapping (using getParameter("word").getValue()). After having performed the query on
the wordtable, set the result using getParameter("result").setValue(gword). When no translation could
be retrieved, the plan has failed and this should be indicated by throwing a PlanFailureException() or resp.

by using the shortcut method fail().

• Create a new EnglishFrenchTranslationPlanE1 as a copy of the EnglishGermanTranslationPlanE1 and
make sure to work on a new wordtable belief efwords. Modify the query_word and the body method ac-
cordingly.

Modify the ADF.

• Add the ProcessTranslationRequestPlanE1 to the ADF as initial plan with a waitqueue for translation re-
quests. Add an initial states section and declare an initial state with an initial plan for the ProcessTransla-
tionRequestPlanE1.

• Adapt the plan head declarations of both plans to include plan parameters and the new triggers. The plan
parameters are directly mapped to the corresponding goal parameters so that the input as well as the result
are automatically transferred from resp. to the goal. In addition, both translation plans should handle exactly
suitable translation goals. In the following the modified plan head for the EnglishGermanTranslationPlanE1
is depicted:

<plan name="egtrans">
<parameter name="word" class="String">

<goalmapping ref="translate.word"/>
</parameter>
<parameter name="result" class="String">

<goalmapping ref="translate.result"/>
</parameter>
<body>new EnglishGermanTranslationPlanE1()</body>
<trigger>

<goal ref="translate">
<parameter ref="direction">

<value>"english_german"</value>
</parameter>

</goal>
</trigger>

</plan>

• Introduce a new goals section and declare the achieve goal for translations:

<goals>
<achievegoal name="translate">

<parameter name="direction" class="String"/>
<parameter name="word" class="String"/>
<parameter name="result" class="String" direction="out"/>

</achievegoal>
</goals>

• Modify the ADF by adjusting the plan declarations to include the new EnglishFrenchTranslationPlanE1 and
exclude the add word plan. Additionally a new belief efwords has to be declared in the beliefs section:

<beliefset name="efwords" class="Tuple">
<fact>new Tuple("milk", "lait")</fact>
<fact>new Tuple("cow", "vache")</fact>
<fact>new Tuple("cat", "chat")</fact>
<fact>new Tuple("dog", "chien")</fact>

</beliefset>

• Introduce a second query for the new belief efword in the expressions section of the ADF:

<expression name="query_efword">
select one $wordpair.get(1)
from $wordpair in $beliefbase.efwords
where $wordpair.get(0).equals($eword)

6.1. Exercise E1 - Subgoals

24 Jadex Tutorial - Release 0.941

</expression>

Start and test the agent. Start the agent and supply it with some translation requests. Observe which plans are
activated in what sequence and how the goal processing is done. Change the translation direction in the requests
and check if the right plan is invoked.

6.2. Exercise E2 - Retrying a Goal
Using the BDI-retry mechanism for trying out different plans for one goal.

Modify the following.

• Modify the trigger of both translating plans so, that they react on every translation goal by removing the
lines:

<parameter ref="direction">
<value>"english_german/english_french"</value>

</parameter>

Having done this causes the translation plans to react on every translation goal, even when they can't handle
the translation direction or language.

• Introduce a new plan parameter for the translation direction and supply it with a corresponding goal map-
ping:

<parameter name="direction" class="String">
<goalmapping ref="translate.direction"/>

</parameter>

• Modify the translation plans so that they check the translation direction in the body method before translat-
ing. When the direction cannot be handled, they should indicate that they failed to achieve the goal by
throwing a PlanFailureException. Addtionally the plans should log or print some warning message, when
they fail to process a goal:

if("english_french".equals(getParameter("direction").getValue()))
// print out some message and fail() if this is not the english-french plan

• You need not to explicitly set the BDI-retry flag of the goal, because in the standard configuration for goals
all BDI-mechanisms (retry, exclude and meta-level reasoning) are enabled. This means, that a failed goal
will be retried by different candidates until it succeeds or all possible candidates have failed to handle the
goal and it is finally failed.

Start and test the agent. Provide the agent with some translation work and watch out how the goal processing
is done this time. Observe by changing the translation direction of the request how different plans are scheduled
to handle a goal.

6.3. Exercise E3 - Maintain Goals
Using a maintain goal to keep the number of wordtable entries below a specified maximum value. For this ex-
ercise we will use the TranslationAgentD2 as starting point.

Create a new file RemoveWordPlanE3.java.

6.2. Exercise E2 - Retrying a Goal

Jadex Tutorial - Release 0.941 25

• This plan has the purpose to delete an entry from the wordtable.

• Create a constructor with a String parameter. This parameter will tell the plan in which belief set an entry
has to be deleted. Save the parameter in an object variable called "belief setname".

• In the body method use the following code to delete one entry from the set:

Object[] facts = getBeliefbase().getBeliefSet(belief setname).getFacts();
getBeliefbase().getBeliefSet(belief setname).removeFact(facts[0]);

Create the TranslationE3.agent.xml as copy from the TranslationD2.agent.xml.

• Remove the FindSynonymsPlanD2 from the plans section and remove the event section completely.

• Add the RemoveWordPlanE3 to the plans section:

<plan name="remegword">
<body>new RemoveWordPlanE3("egwords")</body>
<trigger>

<goal ref="keepstorage"/>
</trigger>
<precondition>$beliefbase.egwords.length > 0</precondition>

</plan>

• Add the following beliefs to the belief section:

<beliefsetref name="egwords">
<concrete ref="transcap.egwords" />

</beliefsetref>
<belief name="maxstorage" class="int">

<fact>8</fact>
</belief>

• Add a new maitain goal declaration to the goals section:

<maintaingoal name="keepstorage" exclude="when_failed">
<maintaincondition>

$beliefbase.egwords.length <= $beliefbase.maxstorage
</maintaincondition>

</maintaingoal>

• Create an initial states section with one initial state that creates a maintain goal instance on startup.

<initialstates>
<initialstate name="default">

<goals>
<initialgoal ref="keepstorage"/>

</goals>
</initialstate>

</initialstates>

Start and test the agent. Start the translation agent and open deugging perspective in the ControlCenter. Now
reduce the value of the maxstorage belief, e.g. by setting it to six. The maintain condition is violated and the
goal should be activated. This leads to a subsequent removal of entries in the belief set, until the condition
holds again. Additionally you can test the agent by sending "add word" requests, observing how a new entry is
created. Furthermore the maintain condition could be violated, what should result in an entry removal.

6.3. Exercise E3 - Maintain Goals

26 Jadex Tutorial - Release 0.941

Chapter 7. Using Events
Communication takes place at two different abstraction levels in Jadex. The so called intra-agent communica-
tion is necessary when two or more plans inside of an agent want to exchange information. They can utilize
several techniques to achieve this. The encouraged possibility is to use beliefs (and conditions). Beliefs in Jadex
are containers for normal Java objects, but they are a specially designed concept for agent modelling and there-
fore using beliefs has several advantages. One advantage is that they allow the usage of conditions to trigger
events depending on belief states (e.g. creating a new goal when a new fact is added to a belief set). Another
advantage is that using the beliefbase one is able to formulate queries and retrieve only entities that correspond
to the query-expression. Another possibility of internal communication is to use explicit internal events. In con-
trast to goals, events are (per default) dispatched to all interested plans but do not support any BDI-mechanisms
(e.g. retry). Therefore the originator of an internal event is usually not interested in the effect the internal event
may produce but only wants to inform some interested parties about some (important) occurence.

On the other hand inter-agent communication describes the act of information exchange between two or more
different agents. The inter-agent information exchange in Jadex is based on asynchronous message event
passing. Each message event in Jadex has a dedicated jadex.model.MessageType which constrains the allowed
parameters and the parameter types of the message event. Currently, only the FIPA message type is supported.
It equips a message type with all possible FIPA parameters such as sender, receivers, performative, content, etc.
Besides the underlying message type (which is normally not of very much importance for agent programmers)
in the ADF user defined message event types are specified, such as the request_translation message event we
already encountered in earlier exercises. Note that the message event types are only locally visible and each
agent uses its own message event types for sending and receiving messages. Hence, when an agent receives a
message it has to decide which local message event type will be used to represent this message. The details of
this process will be outlined in one of the following exercises. In this tutorial we will only show how a basic
communication between two agents is implemented, when one agent offers a service that the other one seeks.
The supplier therefore has to register it's services by the Directory Facilitator (DF) and is further on available as
service provider. Another agent seeks a service by asking the DF and receives the providers address which it
subsequently uses for the direct communication with the provider.

7.1. Exercise F1 - Internal Events
In this exercise we will use internal events to broadcast information. We extend the simple translation agent
from exercise C2 with a plan that shows the processed requests in a gui triggered by an internal event.

Create a new GUI class named TranslationGuiF1.java as an extension of a JFrame.

• This class has the purpose to show the already performed actions in a table. As member variable the table
model is needed to be able to refresh the data in response to update notifications.

protected DefaultTableModel tadata;

• In the constructor the table and its model should be created and added to the frame:

String[] columns = new String[]{"Action", "Language", "Content", "Translation"};
this.tadata = new DefaultTableModel(columns, 0);
JTable tatable = new JTable(tadata);
JScrollPane sp = new JScrollPane(tatable);
this.getContentPane().add("Center", sp);
this.pack();
this.setVisible(true);

• Finally, for updating the gui a method is needed:

public void addRow(final String[] content){
SwingUtilities.invokeLater(new Runnable(){

public void run(){
tadata.addRow(content);

}
});

}

Modify the plans.

• Create a new GUIPlanF1 plan that has the purpose to create the gui and update it accordingly. The plan
should create the gui in its constructor. In its body method it should wait in an endless lopp for internal
events of type gui_update:

IInternalEvent event = waitForInternalEvent("gui_update");

Whenever such an event occurs the plan has to invoke the addRow() method of the gui whereby the update
information is contained in a parameter named content within the internal event, accessible by:

event.getParameter("content").getValue();

In addition the plan's aborted method can be used to close the gui automatically when the agent is termin-
ated:

public void aborted(){
SwingUtilities.invokeLater(new Runnable(){

public void run(){
gui.dispose();

}
});

}

• Modify the EnglishGermanTranslationPlanF1 so that it produces an internal event after translation pro-
cessing:

IInternalEvent event = createInternalEvent("gui_update");
event.getParameter("content").setValue(new String[]{action, dir, eword, gword});
dispatchInternalEvent(event);

Modify the ADF .

• The addword plan and event declarations are not used and can be removed for clarity.

• Modify the ADF so, that it contains the declaration for the new gui plan without specifying a trigger:

<plan name="gui">
<body>new GUIPlanF1()</body>

</plan>

• Introduce the declaration of the new gui_update event within the events section:

<internalevent name="gui_update">
<parameter name="content" class="String[]"/>

</internalevent>

• Add an initial states section with one initial state that creates an initial gui plan:

7.1. Exercise F1 - Internal Events

28 Jadex Tutorial - Release 0.941

<initialstates><initialstate name="default">
<plans>

<initialplan ref="gui"/>
</plans>

</initialstate>
</initialstates>

Start and test the agent.

• Start the agent and send several translation requests to the agent. Observe if the gui displays all the transla-
tion requests.

7.2. Exercise F2 - Receiving Messages

This exercise will explain how the mapping of received messages to the agent's message events works.
Whenever an agent receives a message it has to decide which message event will internally be used for repres-
enting the message. This mapping is very important because any agent behaviour such as e.g. plan triggers may
only depend on the interpreted message event type. In general the event mapping works automatically and an
agent designer does not have to worry about the mappings. Nevertheless, there are situations in which more
than one mapping from a received message to different message events are available (normally this is undesir-
able and should be avoided by using more specific message event declarations). In such situations the agent
rates the alternatives by specificity that is simply estimated by the number of parameters used for the declara-
tion and chooses the one with the highest specificity. If more than one alternative has the same specificity the
first one is chosen, although this case indicates an implementation flaw and might lead to undesired behaviour
when the wrong mapping is chosen. In any case, the developer is informed with a logging message whenever
more than one mapping was found by the agent.

As starting point for this exercise we take agent B2, which only has one passive translation plan which reacts
on request messages. Other kinds of messages are simply ignored by the agent. To improve this situation and
let the agent anwer on all incoming messages we use the ready to use NotUnderstoodPlan from the Jadex plan
library.

Modify the copied file TranslationF2.agent.xml to include the new not-understood plan.

• Add the following to the imports section:

<import>jadex.planlib.*</import>

• Add the new not-understood plan to the plan declarations:

<plan name="notunderstood">
<body>new NotUnderstoodPlan()</body>
<trigger>

<messageevent ref="any_message"/>
</trigger>

</plan>

• Add the new any_message event which matches all kinds of messages to the event declarations:

<messageevent name="any_message" direction="receive" type="fipa"/>

Start and test the agent. The added plan provides the agent with the ability to react on arbitrary messages.

7.2. Exercise F2 - Receiving Messages

Jadex Tutorial - Release 0.941 29

When the agent receives a message with performative request, both message events match and the re-
quest_translation event is chosen due to its higher specificity. Other messages are directly mapped to the
any_message event type. Send the agent different messages and observe if it invokes the right plans.

7.3. Exercise F3 - Service publication
We make the services of our translation agent publicly available by registering its service description at the Dir-
ectory Facilitator (DF).

Use the translation agent D1 as starting point and extend its copied ADF by performing the following
steps.

• Include the DF capability in the ADF to be used:

<capabilities>
<capability name="dfcap" file="jadex.planlib.DF"/>
<capability name="transcap" file="TranslationD1"/>

</capabilities>

• Create a reference for the df_keep_registered goal to make it locally available:

<goals>
<maintaingoalref name="df_keep_registered">

<concrete ref="dfcap.df_keep_registered"/>
</maintaingoalref>

</goals>

• Create an initial states section with one initial state. In this initial state an initial goal for the df registration
should be provided. The agent description that is used for the registration is provided as initial value of the
"description" parameter of the df_keep_registered goal:

<initialstates>
<initialstate name="default">

<goals>
<initialgoal ref="df_keep_registered">

<parameter ref="description">
<value>

SFipa.createAgentDescription(null,
SFipa.createServiceDescription("service_translate",
"translate english_german", "University of Hamburg"))

</value>
</parameter>
<parameter ref="leasetime">

<value>20000</value>
</parameter>

</initialgoal>
</goals>

</initialstate>
</initialstates>

Start and test the agent.

• Start the agent and open the DF GUI. Observe if an entry for the agent exists. Note that when you want to
register the agent at a remote df, you only need to slightly modify your initial goal description by adding
parameter values for the DF AgentIdentifier and address.

7.4. Exercise F4 - A Multi-Agent Scenario

7.3. Exercise F3 - Service publication

30 Jadex Tutorial - Release 0.941

As a little highlight we now extend our scenario from F3 to become a real multi-agent system. The scenario is
depicted in Figure 7.1, “F4 multi-agent scenario”. The user wishes to translate a sentence and sends its requests
via the message center to the user agent. The user agent searches for a translation service at the DF and sub-
sequently sends for each word from the sentence, a translation request to the translation agent. The user agent
collects the translated words and sends back the translated sentence to the message center, where it is visible for
the user.

Figure 7.1. F4 multi-agent scenario

Create a new UserAgentF4.agent.xml.

• Create a new agent called UserAgent by creating an ADF and one plan called EnglishGermanTranslateSen-
tencePlanF4. In the ADF define the translate sentence plan with an appropriate waitqueue that handles mes-
sage events of the new type request_translatesentence. The new request_translatesentence message event
should be declared to match request messages that start with "translate_sentence english_german". Addi-
tionally incorporate the DF capability in the capabilities section and create reference for the goal_request
and df_search goals. This agent needs the search plan from the DF capability to find a translation service.

<agent xmlns="http://jadex.sourceforge.net/jadex"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://jadex.sourceforge.net/jadex

http://jadex.sourceforge.net/jadex-0.94.xsd"
name="UserF4"
package="jadex.tutorial">

<imports>
<import>jadex.planlib.*</import>
<import>jadex.adapter.fipa.*</import>
<import>java.util.logging.*</import>

</imports>

<capabilities>
<capability name="dfcap" file="jadex.planlib.DF"/>

</capabilities>

<goals>
<achievegoalref name="goal_request">

<concrete ref="dfcap.goal_request"/>
</achievegoalref>
<achievegoalref name="df_search">

<concrete ref="dfcap.df_search"/>
</achievegoalref>

</goals>

<plans>
<plan name="egtrans">

7.4. Exercise F4 - A Multi-Agent Scenario

Jadex Tutorial - Release 0.941 31

<body>new EnglishGermanTranslateSentencePlanF4()</body>
<waitqueue>

<messageevent ref="request_translatesentence"/>
</waitqueue>

</plan>
</plans>

<events>
<messageevent name="request_translatesentence" direction="receive" type="fipa">

<parameter name="performative" class="String" direction="fixed">
<value>SFipa.REQUEST</value>

</parameter>
<parameter name="content-start" class="String" direction="fixed">

<value>"translate_sentence english_german"</value>
</parameter>

</messageevent>
<messageevent name="inform" direction="send" type="fipa">

<parameter name="performative" class="String" direction="fixed">
<value>SFipa.INFORM</value>

</parameter>
</messageevent>
<messageevent name="failure" direction="send" type="fipa">

<parameter name="performative" class="String" direction="fixed">
<value>SFipa.FAILURE</value>

</parameter>
</messageevent>

</events>

<initialstates>
<initialstate name="default">

<plans>
<initialplan ref="egtrans"/>

</plans>
</initialstate>

</initialstates>
</agent>

• The body method of this plan should adhere to the following basic structure:

public void body()
{

while(true)
{

// Read the user request.
IMessageEvent mevent = (IMessageEvent)waitForMessageEvent("request_translatesentence");

// Save the words of the sentence.
// Process the message event here...

// Search a translation agent.
if(ta==null) // ta is the instance variable for the translation agent
{

// Create a service description to search for.
// Use a df-search subgoal to search for a translation agent
// Save the translation agent in the variable ta
// If no translation agent could be found throw an exception

}

// Translate the words.
for(int i=0; i<words.length; i++)
{

IGoal tw = createGoal("goal_request");
tw.getParameter("content").setValue("translate english_german "+words[i]);
tw.getParameter("receiver").setValue(this.ta);
try
{

dispatchSubgoalAndWait(tw);
twords[i] = (String)tw.getParameter("result").getValue();

}

7.4. Exercise F4 - A Multi-Agent Scenario

32 Jadex Tutorial - Release 0.941

catch(GoalFailureException gfe)
{

twords[i] = "n/a";
}

}

// Send the reply with the translation of the whole sentence
// to the caller (the user agent)
// ...

}
}

Start and test the agent.

• Start a translation agent and a user agent. Now send a translate sentence request to to the user agent, which
will answer with a message in which the translated sentence is contained, e.g."translate_sentence eng-
lish_german dog cat milk".

7.4. Exercise F4 - A Multi-Agent Scenario

Jadex Tutorial - Release 0.941 33

Chapter 8. External Processes
One prominent application for agents is wrapping legacy systems and "agentifying" them. Hence, it is an im-
portant point how separate processes can interact with Jadex agents as these applications often use other means
of communications such as sockets or RMI. A Jadex agent executes behaviour sequentially and does not allow
any parallel access to its internal structures due to integrity constraints. For this reason it is disallowed and dis-
couraged to block the active plan thread e.g. by opening sockets and waiting for connections or simply by call-
ing Thread.sleep(). This can cause the whole agent to hang because the agent waits for the completion of the
current plan step. It will possibly abort the plan when the maximum plan step execution time has been exceeded
(if the maximum execution is restricted within the agent runtime.properties). When external processes need to
interact directly with the agent, they have to use methods from the so called jadex.runtime.IExternalAccess,
which offers the most common agents methods.

8.1. Exercise G1 - Socket Communication
We extend the simple translation agent from exercise C2 with a plan that sets up a server socket which listens
for translation requests. Whenever a new request is issued (e.g. from a browser) a new goal containing the cli-
ent connection is created and dispatched. The translation plan handles this translation goal and sends back some
HTML content including some text and the translated word.

Create a new file for the ServerPlanG1.

• Declare the ServerSocket as attribute within the plan

protected ServerSocket server;

• Create a constructor which takes the server port as argument and create a the server within it:

this.server = new ServerSocket(port);
getLogger().info("Created: "+server);

• In the body simply start a new thread that will handle client request in the run method. Additionally do not
quit the plan to be able to shut down the server when the agent is killed:

new Thread(this).start();
waitFor(IFilter.NEVER);

• When the agent dies its plans are aborted. Hence, in the aborted method the server can be closed:

public void aborted(){
server.close();

}

• In the threads run method create and dispatch goals for every incoming request:

while(true)
{

Socket client = server.accept();
IGoal goal = getExternalAccess().getGoalbase().createGoal("translate");
goal.getParameter("client").setValue(client);
getExternalAccess().getGoalbase().dispatchTopLevelGoal(goal);

}

Modify the EnglishGermanTranslationPlanG1 to handle translation goals.

• Extract the socket from the goal and read the English word:

Socket client = (Socket)getRootGoal().getParameter("client").getValue();
BufferedReader in = new BufferedReader(new InputStreamReader(client.getInputStream()));
String request = in.readLine();
// Read the word to translate from the input string

• Translate the word as usual by using the query

• Send back answer to the client:

PrintStream out = new PrintStream(client.getOutputStream());
out.print("HTTP/1.0 200 OK\r\n");
out.print("Content-type: text/html\r\n"); out.println("\r\n");
out.println("<html><head><title>TranslationG1 - "+eword

+"</title></head><body>");
out.println("<p>Translated from english to german: "+eword+" = "+gword+".");
out.println("</p></body></html>");
client.close();

Create a file TranslationG1.agent.xml by copying TranslationC2.agent.xml.

• The addword plan and event declarations are not used and can be removed for clarity.

• Introduce the translation goal type:

<achievegoal name="translate">
<parameter name="client" class="java.net.Socket"/>

</achievegoal>

• Introduce the new plan for setting up the server and start the plan initially:

<plan name="server">
<body>new ServerPlanG1(9099)</body>

</plan>
...
<initialstates>

<initialstate name="default">
<plans>

<initialplan ref="server"/>
</plans>

</initialstate>
</initialstates>

• Modify the trigger of the translation plan to react on translation goals

<plan name="egtrans">
<body>new EnglishGermanTranslationPlanG1()</body>
<trigger>

<goal ref="translate"/>
</trigger>

</plan>

Start and test the agent.

• Start the agent and open a browser to issue translation request. This can be done by entering the server url
and appending the word to translate, e.g. http://localhost:9099/dog. The result should be printed out in the
returned web page.

8.1. Exercise G1 - Socket Communication

36 Jadex Tutorial - Release 0.941

http://localhost:9099/dog

Chapter 9. Conclusion and Outlook
We hope you enjoyed working through the tutorial and now are equipped at least with a basic understanding of
the Jadex BDI reasoning engine. Nevertheless, this tutorial does not cover all important aspects about agent
programming in Jadex. Most importantly the following topics have not been discussed:

9.1. Ontologies
Ontologies can be used for describing message contents. In more complex applications you usually want to
transfer objects instead of simple strings. In Jadex for this purpose you could use arbitrary Java beans in con-
nection with the SFipa.JAVA_XML language. If this language is specified for a message event the standard
Java XMLEncoder/Decoder will be used to encode/decode the message content. If you don't want to write the
beans by hand you also could use the beanynizer tool [Jadex Tool Guide] to generate beans directly from an on-
tology description defined in Protege. Further information about ontologies you can find in the [Jadex User
Guide], on the Protege homepage and in the source code of various examples shipped with the Jadex distribu-
tion.

9.2. Goal Deliberation
This tutorial only mentions the different goal types available in Jadex (perform, achieve, query and maintain). It
does not cover aspects of goal deliberation, i.e. how a conflict free pursuit of goals can be ensured. Jadex offers
the built-in Easy Deliberation strategy for this purpose. The strategy allows to constrain the cardinality of act-
ive goals. Additionally, it is possible to define inhibition links between goals that allow to establish an ordering
of goals. Inhibited goals are suspended and can be reactivated when the reason for their inhibition has vanished,
e.g. another goal has finished processing. Please refer also to the [Jadex User Guide] for an extended explana-
tion. Background information is available in the paper [Pokahr et al. 2005a].

9.3. Plan Deliberation
If more than one plan is applicable for a given goal or event the Jadex interpreter has to decide which plan actu-
ally will be given a chance to handle the goal resp. event. This decision process called plan deliberation can be
customized with meta-level reasoning. This means that a custom defined meta-level goal is automatically
raised by the system in case a plan decision has to be made. This meta goal can be handled by a corresponding
meta-level plan which has the task to select among the candidate plans. Further details about meta-level reason-
ing can be found in the [Jadex User Guide] and by looking into the source code of the "puzzle" agent included
in the Jadex release.

9.4. Jadex BDI Architecture
During some of the exercises you may have used the Jadex debugger for executing Jadex agents step-by-step.
But what makes-up one such step in the debugger? All steps represent BDI meta-actions meaning that they are
not at the application-level but on the architecture level. Examples for such meta- actions are "selecting plans
for a given event", "executing a plan step", "creating a new goal" and many more. Basically, the Jadex inter-
preter selects one meta-action after another and executes them when they are applicable in the current situation.
This new architecture makes the Jadex framework efficient and also extensible as new meta-actions can be ad-
ded to the system easily. Details about the architecture are described in the [Jadex User Guide] and the paper
[Pokahr et al. 2005b].

http://protege.stanford.edu/

Bibliography
[Bratman 1987] M. Bratman. Intention, Plans, and Practical Reason. Harvard University Press. Cambridge,

MA, USA. 1987.

[Braubach et al. 2004] L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal Representation for BDI
Agent Systems. R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni. Proceedings of the
Second Workshop on Programming Multiagent Systems: Languages, frameworks, techniques, and tools
(ProMAS04). Springer. Berlin, New York. 2004. pp.9-20.

[Braubach et al. 2005a] L. Braubach, A. Pokahr, and W. Lamersdorf. . R. Unland, M. Klusch, and M. Calisti.
Software Agent-Based Applications, Platforms and Development Kits. Birkhäuser. 2005. pp.143-168.

[Braubach et al. 2005b] L. Braubach, A. Pokahr, and W. Lamersdorf. Extending the Capability Concept for
Flexible BDI Agent Modularization. R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni. Pro-
ceedings of the Third International Workshop on Programming Multi-Agent Systems (ProMAS'05). .
2005. pp.99-114.

[Busetta et al. 2000] P. Busetta, N. Howden, R. Rönnquist, and A. Hodgson. Structuring BDI Agents in Func-
tional Clusters. N. Jennings and Y. Lespérance. Intelligent Agents VI, Proceedings of the 6th Interna-
tional Workshop, Agent Theories, Architectures, and Languages (ATAL) '99. Springer. Berlin, New
York. 2000. pp.277-289.

[Hindriks et al. 1999] K. Hindriks, F. de Boer, W. van der Hoek, and J.-J. Meyer. Agent Programming in 3APL.
N. Jennings, K. Sycara, and M. Georgeff. Autonomous Agents and Multi-Agent Systems. Kluwer Aca-
demic publishers. 1999. pp. 357-401.

[Huber 1999] M. Huber. JAM: A BDI-Theoretic Mobile Agent Architecture. O. Etzioni, J. Müller, and J. Brad-
shaw. Proceedings of the Third Annual Conference on Autonomous Agents (AGENTS-99). ACM Press.
New York. 1999. pp. 236-243.

[Jadex Tutorial] L. Braubach, A. Pokahr, and A. Walczak. Jadex Tutorial. 2005.

[Jadex Tool Guide] A. Pokahr, L. Braubach, R. Leppin, and A. Walczak. Jadex Tool Guide. 2005.

[Jadex User Guide] A. Pokahr, L. Braubach, and A. Walczak. Jadex User Guide. 2005.

[Lehman et al. 1996] J. F. Lehman, J. E. Laird, and P. S. Rosenbloom. A gentle introduction to Soar, an archi-
tecture for human cognition. Invitation to Cognitive Science Vol. 4. MIT press. 1996.

[McCarthy et al. 1979] J. McCarthy. Ascribing mental qualities to machine. M. Ringle. Philosophical Perspect-
ives in Artificial Intelligence. Humanities Press. Atlantic Highlands, NJ. 1979. pp. 161-195.

[Pokahr et al. 2005a] A. Pokahr, L. Braubach, and W. Lamersdorf. A Goal Deliberation Strategy for BDI Agent
Systems. T. Eymann, F. Klügl, W. Lamersdorf, M. Klusch, and M. Huhns. In Proceedings of the third
German conference on Multi-Agent System TEchnologieS (MATES-2005). Springer-Verlag. Berlin
Heidelberg New York. 2005.

[Pokahr et al. 2005b] A. Pokahr, L. Braubach, and W. Lamersdorf. A Flexible BDI Architecture Supporting Ex-
tensibility. A. Skowron, J.P. Barthes, L. Jain, R. Sun, P. Morizet-Mahoudeaux, J. Liu, and N. Zhong.
Proceedings of The 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology
(IAT-2005). IEEE Computer Society. 2005. pp. 379-385.

[Pokahr et al. 2005c] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI Reasoning Engine. R. Bor-

dini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni. Programing Multi-Agent Systems. Kluwer Aca-
demic Publishers. 2005. pp.149-174.

[Rao and Georgeff 1995] A. Rao and M. Georgeff. BDI Agents: from theory to practice. V. Lesser. Proceed-
ings of the First International Conference on Multi-Agent Systems (ICMAS'95). The MIT Press. Cam-
bridge, MA, USA. 1995. pp.312-319.

[Shoham 1993] Y. Shoham. Agent-oriented programming. D. G. Bobrow. Artificial Intelligence Volume 60. El-
sevier. Amsterdam. 1993. pp.51-92.

[Winikoff 2005] M. Winikoff. JACK Intelligent Agents: An Industrial Strength Platform. R. Bordini, M. Dast-
ani, J. Dix, and A. El Fallah Seghrouchni. Programing Multi-Agent Systems. Kluwer Academic Pub-
lishers. 2005. pp.175-193.

40 Jadex Tutorial - Release 0.941

	Jadex Tutorial
	Table of Contents
	Chapter 1. Introduction
	1.1. Application Context
	1.2. How to Use This Tutorial

	Chapter 2. Starting an Agent
	2.1. Exercise A1 - Jadex Platform

	Chapter 3. Using Plans
	3.1. Exercise B1 - Service Plans
	3.2. Exercise B2 - Passive Plans
	3.3. Exercise B3 - Plan Parameters
	3.4. Exercise B4 - Plan Selection
	3.5. Exercise B5 - BDI Debugger
	3.6. Exercise B6 - Log-Outputs

	Chapter 4. Using Beliefs
	4.1. Exercise C1 - Beliefs
	4.2. Exercise C2 - Beliefsets
	4.3. Exercise C3 - Belief Conditions
	4.4. Exercise C4 - BDI Viewer

	Chapter 5. Using Capabilities
	5.1. Preparation
	5.2. Exercise D1 - Creating a Capability
	5.3. Exercise D2 - Exported Beliefs

	Chapter 6. Using Goals
	6.1. Exercise E1 - Subgoals
	6.2. Exercise E2 - Retrying a Goal
	6.3. Exercise E3 - Maintain Goals

	Chapter 7. Using Events
	7.1. Exercise F1 - Internal Events
	7.2. Exercise F2 - Receiving Messages
	7.3. Exercise F3 - Service publication
	7.4. Exercise F4 - A Multi-Agent Scenario

	Chapter 8. External Processes
	8.1. Exercise G1 - Socket Communication

	Chapter 9. Conclusion and Outlook
	9.1. Ontologies
	9.2. Goal Deliberation
	9.3. Plan Deliberation
	9.4. Jadex BDI Architecture

	Bibliography

